Consistency and Convergence Rates of One-Class SVM and Related Algorithms
نویسندگان
چکیده
We determine the asymptotic limit of the function computed by support vector machines (SVM) and related algorithms that minimize a regularized empirical convex loss function in the reproducing kernel Hilbert space of the Gaussian RBF kernel, in the situation where the number of examples tends to infinity, the bandwidth of the Gaussian kernel tends to 0, and the regularization parameter is held fixed. Non-asymptotic convergence bounds to this limit in the L2 sense are provided, together with upper bounds on the classification error that is shown to converge to the Bayes risk, therefore proving the Bayes-consistency of a variety of methods although the regularization term does not vanish. These results are particularly relevant to the one-class SVM, for which the regularization can not vanish by construction, and which is shown for the first time to be a consistent density level set estimator.
منابع مشابه
Consistency and Convergence Rates of One-Class SVMs and Related Algorithms
We determine the asymptotic behaviour of the function computed by support vector machines (SVM) and related algorithms that minimize a regularized empirical convex loss function in the reproducing kernel Hilbert space of the Gaussian RBF kernel, in the situation where the number of examples tends to infinity, the bandwidth of the Gaussian kernel tends to 0, and the regularization parameter is h...
متن کاملConsistency of one-class SVM and related algorithms
We determine the asymptotic limit of the function computed by support vector machines (SVM) and related algorithms that minimize a regularized empirical convex loss function in the reproducing kernel Hilbert space of the Gaussian RBF kernel, in the situation where the number of examples tends to infinity, the bandwidth of the Gaussian kernel tends to 0, and the regularization parameter is held ...
متن کاملDetection of Fake Accounts in Social Networks Based on One Class Classification
Detection of fake accounts on social networks is a challenging process. The previous methods in identification of fake accounts have not considered the strength of the users’ communications, hence reducing their efficiency. In this work, we are going to present a detection method based on the users’ similarities considering the network communications of the users. In the first step, similarity ...
متن کاملConvergence, Consistency and Stability in Fuzzy Differential Equations
In this paper, we consider First-order fuzzy differential equations with initial value conditions. The convergence, consistency and stability of difference method for approximating the solution of fuzzy differential equations involving generalized H-differentiability, are studied. Then the local truncation error is defined and sufficient conditions for convergence, consistency and stability of ...
متن کاملDensity Level Detection is Classification
We show that anomaly detection can be interpreted as a binary classification problem. Using this interpretation we propose a support vector machine (SVM) for anomaly detection. We then present some theoretical results which include consistency and learning rates. Finally, we experimentally compare our SVM with the standard one-class SVM.
متن کامل